
Checking and Distributing
Statistical Model-Checking

Peter Bulychev
Alexandre David

Kim G. Larsen
Axel Legay

Marius Mikucionis
Danny Bøgsted Poulsen

Outline

• UPPAAL-SMC in a Nutshell

• Distributing SMC

• Checking DSMC

• Case-studies

NFM'12 2

UPPAAL

NFM'12 3

A[] forall (i : id_t) forall (j : id_t)
 Train(i).Cross && Train(j).Cross imply i == j

Safety

E<> Train(0).Cross and Train(1).Stop
Reachability

Train(0).Appr --> Train(0).Cross
Liveness

A<> .. E[] ..

sup: .. inf: ..
Limited quantitative analysis

Performance properties

State-space explosion

UPPAAL SMC

NFM'12 4

Performance properties

State-space explosion

Pr[<= 200](<> Train(5).Cross)

Performance properties

State-space explosion

Pr[<= 100](<> Train(0).Cross) >= 0.8

Pr[<= 100](<> Train(5).Cross) >=
Pr[<= 100](<> Train(1).Cross)

Generate random runs

Stochastic Semantics of UPPAAL TA

NFM'12 Kim Larsen [5]

Uniform Distribution

Stochastic Semantics of UPPAAL TA

NFM'12 Kim Larsen [6]

Exponential Distribution

Input enabled
broadcast channels

Composition =
Repeated races between components

Queries
Syntax

• Hypothesis testing
Pr[<=100](<> expr)>=0.1
x<=100 #<=50 [] expr <=0.5

• Evaluation
Pr[<=100](<> expr)

• Comparison
Pr[<=20](<> e1)>=Pr[<=10](<> e2)

• Expected value
E[<=10;1000](min: expr)
Explicit number of runs. Min or max.

• Simulations
simulate 10 [<=100]{expr1,expr2}

NFM'12 7

Queries
Syntax

• Hypothesis testing
Pr[<=100](<> expr)>=0.1
x<=100 #<=50 [] expr <=0.5

• Evaluation
Pr[<=100](<> expr)

• Comparison
Pr[<=20](<> e1)>=Pr[<=10](<> e2)

• Expected value
E[<=10;1000](min: expr)
Explicit number of runs. Min or max.

• Simulations
simulate 10 [<=100]{expr1,expr2}

NFM'12 8

SMC in UPPAAL
• Constant Slope Timed Automata

– Clocks may have different (integer) slope in different
locations.

– Branching edges with discrete probabilities (weights).
– Beyond Priced TA, Energy TA. Equal LHA in (non-

stochastic) expressive power.
– Beyond DTMC, beyond CTMC (with multiple rewards)

• All features of UPPAAL supported
– User defined functions and types
– Expressions in guards, invariants, clock-rates, delay-

rates (rationals), and weights.

• New GUI for plot-composing and exporting.

11 NFM'12

Invariants:
x’==0 && y’==bool_fun()
Invariants:
x’==0 && y’==bool_fun()

SMC in UPPAAL
• Constant Slope Timed Automata

– Clocks may have different (integer) slope in different
locations.

– Branching edges with discrete probabilities (weights).
– Beyond Priced TA, Energy TA. Equal LHA in (non-

stochastic) expressive power.
– Beyond DTMC, beyond CTMC (with multiple rewards)

• All features of UPPAAL supported
– User defined functions and types
– Expressions in guards, invariants, clock-rates, delay-

rates (rationals), and weights.

• New GUI for plot-composing and exporting.

12 NFM'12

SMC in UPPAAL
• Constant Slope Timed Automata

– Clocks may have different (integer) slope in different
locations.

– Branching edges with discrete probabilities (weights).
– Beyond Priced TA, Energy TA, DTMC, CTMC, LHA.

Equal LHA in (non-stochastic) expressive power.
– Hybrid systems – by discretizing time, integrating

differential equations!

• All features of UPPAAL supported
– User defined functions and types
– Expressions in guards, invariants, clock-rates, delay-

rates (rationals), and weights.

• New GUI for plot-composing and exporting.
13 NFM'12

Distributing SMC

• Distributed SMC

– Evaluation – trivial to parallelize

– Hypothesis – careful

runs #

r

Accept H0

Accept H1

Hypothesis testing:
intuition.

NFM'12 15

Distributing SMC

• Distributing hypothesis testing.

NFM'12 16

Decide on-the-fly Decide on-the-fly

Bias for hypothesis testing

Very long run, slow to
compute, maybe slower
and overloaded machine.

Distributing SMC – Naïve Approach

NFM'12 17

CORE

MASTER

Distributing SMC – Naïve Approach

NFM'12 18

Pr[#<=20000](<> Master.OK)
Appr. ½ min

Pr[#<=20000](<> Master.NOK)
Appr. 10 min

Solving Bias [Younes’05]

Queue the results at a master, use
Round-Robin between nodes to accept
the results.

Our Implementation

• Use a batch of B (e.g 10) runs, transmit one count per
batch.

• Use asynchronous communication (MPI)
• Queue results at the master and wait only when the

buffer (size=K) is full.

NFM'12 19

Master waits if needed
5 2

1

4 5 5

1

1

7

2 1

2

2

4

5

6

1

3 7

2

8

2

Incoming messages from cores!

K

Our Implementation

• Senders have a buffer of (K) asynchronously sent
messages and blocks only when the buffer is full.

• The master periodically add results in the buffer.

NFM'12 20

Update “r”, if can’t decide, next

Update “r”, if can’t decide, next

Update “r”, if can’t decide, next

Update “r”, if can’t decide, continue

5 2

1

4 5 5

1

1

7

2 1

2

2

4

5

6

1

3 7

2

8

2

NFM'12 21

Results
16, 32, 128 cores, Vary Buffer & Batch Sizes

“Small” model: Exhibit expected behaviour.

“Big” model: Amortize the differences.

Checking DSMC

• We can model the algorithm inside UPPAAL.

– Run SMC on it, even DSMC!

NFM'12 22

NFM'12 23

Slave Node

Pr[# <= 100](<> Train(5).Cross)

x=0

Safe

Stop

x=0

x=0

x=0

x<=10

x>=3

Cross

Appr

x>=10

Start

x>=7

stop[id]?

leave[id]!

appr[id]!

x<=5

x<= 15x<=20

go[id]?

(1+id):N*N

x=0

Safe

Stop

x=0

x=0

x=0

x<=10

x>=3

Cross

Appr

x>=10

Start

x>=7

stop[id]?

leave[id]!

appr[id]!

x<=5

x<= 15x<=20

go[id]?

(1+id):N*N

x=0

Safe

Stop

x=0

x=0

x=0

x<=10

x>=3

Cross

Appr

x>=10

Start

x>=7

stop[id]?

leave[id]!

appr[id]!

x<=5

x<= 15x<=20

go[id]?

(1+id):N*N

x=0

Safe

Stop

x=0

x=0

x=0

x<=10

x>=3

Cross

Appr

x>=10

Start

x>=7

stop[id]?

leave[id]!

appr[id]!

x<=5

x<= 15x<=20

go[id]?

(1+id):N*N

x=0

Safe

Stop

x=0

x=0

x=0

x<=10

x>=3

Cross

Appr

x>=10

Start

x>=7

stop[id]?

leave[id]!

appr[id]!

x<=5

x<= 15x<=20

go[id]?

(1+id):N*N

enqueue(e)

dequeue()

enqueue(e)

e == front()
len > 0

Stopping

Free

Occ

len == 0

leave[e]?

stop[tail()]!appr[e]?

appr[e]?

e : id_t

go[front()]!

e : id_t

e:id_t

train gate
model

Master Node

NFM'12 24

NFM'12 25

Read batch.

Exact decision.

Safe approximate
decision.

Results

NFM'12 26

N=16
B=1..10
K=1,2,4,8

Can predict performance.
Can derive more information,
e.g., processor usage.
Validate implementation.

Property used:
E[time<=1000; 1000] (max: usage)

Conclusions:
K=1 has huge effect and should be avoided.
K=2 has effect if B<20.
K>2 are indistinguishable on homogeneous cluster.
K>2 and B>20: number of simulations scale
 linearly to the number of cores used.

Case Studies

27

FIREWIRE BLUETOOTH

LMAC

NFM'12

LMAC

Lightweight Media Access Control (LMAC)

• Problem domain:

– communication scheduling

• Targeted for:

– self-configuring networks,

– collision avoidance,

– low power consumption

• Application domain:

– wireless sensor networks

NFM'12 29

LMAC Protocol Design

• Four phases:
– Initialization (listen until a neighbor is heard)

– Waiting (delay a random amount of time frames)

– Discovery (wait for entire frame and note used slots)

– Active
• choose free slot,

• use it to transmit, including info about detected collisions

• listen on other slots

• fallback to Discovery if collision is detected

• Only neighbors can detect collision and tell the
user-node that its slot is used by others

 NFM'12 30

adopted from A.Fehnker, L.v.Hoesel, A.Mader

added power

discovery

random wait

active usage

initialization

NFM'12 31

http://academic.research.microsoft.com/Author/2311816/ansgar-fehnker
http://academic.research.microsoft.com/Author/1428994/lodewijk-van-hoesel
http://academic.research.microsoft.com/Author/636374/angelika-mader

Classical vs. Statistical MC

• A.Fehnker, L.v.Hoesel and A.Mader used
UPPAAL to explore 4- and 5-node topologies
and found cases with perpetual collisions.

• However they could not know whether the
next collisions are inevitable.

• Statistical MC offers an insight by calculating
the probability over the number of collisions.

 + estimated cost in terms of energy.

NFM'12 32

LMAC Simple Statistics for 4 Nodes

• Wait distribution:

– geometric

– uniform

• Network topology:

– chain

– ring

• Collision probability

• Collision count

• Power consumption Pr[<=160] (<> col_count>0)

Pr[collisions<=50000] (<> time>=1000)

no collisions

<12 collisions

zero

Pr[energy <= 50000] (<> time>=1000)

NFM'12 33

LMAC with Parameterized Topology

[0.36; 0.39]

topology
collision

probability

[0.29; 0.36]

[0.26; 0.30]

[0.19; 0.21]

topology
collision

probability

[0.08; 0.19]

[0.11; 0.13]

[0.08; 0.15]

[0.049; 0.050]

Pr[time<=200] (<> col_count>0)

Collision probability in a 4 node network of a randomly generated topology:

(star)

(ring)

(chain)

NFM'12 34

10-Node Chain

0

The first collision:
happens before 800tu Collision counts after 1000tu

The first collisions can be as late as 800tu.
It is very likely (>94%) that
 there will be 0 collisions.
But if they happen, some are perpetual.

Collision counts after 2000tu:
the numbers are doubled,
there’s gap of zeros –
collision count is diverging

NFM'12 35

10-Node Ring

The first collision:
happens before 1000tu

Collision counts after 1000tu

Collision counts after 2000tu:
the numbers are doubled –
perpetual collisions

The first collisions can be as late as 920tu.
It is very likely (>90%) that
 there will be 0 collisions.
But if they happen, they are perpetual.

0 0

0 0

NFM'12 36

10-Node Star

The first collision:
happens before 500tu

Collision counts after 1000tu

Collision counts after 2000tu:
the numbers are doubled –
perpetual collisions

The first collisions happen before 500tu.
It is unlikely (8.2%) that
 there will be 0 collisions.
And if they happen, they are perpetual.

0 0 0

0 0 0

NFM'12 37

10-Node Random Topologies
Generated 10000 random topologies
Checked the property:
 Pr[time<=2000](<> col_count>42)
 (perpetual collisions are likely)
One instance on a laptop takes ~3.5min
All 10000 instances on 32-core cluster: 409.5min
There were:
6091 with >0 probability (shown in histogram)
3909 instances with 0 probability (removed)
The highest probability was 0.63
While star topology yields 0.91

NFM'12 38

Conclusion

• Preliminary experiments indicate that
distributed SMC in UPPAAL scales very nicely.

• More work to identify impact of parameters
for distributing individual SMC?

• UPPAAL 4.1.9 available
 (support for SMC, DSMC, 64-bit,..)

NFM'12 39

End

